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ABSTRACT 

In this paper we study the Adjoint L-function for SP4. For generic cusp 

forms of Sp4(A ) we construct a global Rankin-Selberg integral which 

represents this L-function. 

Introduct ion  

In this paper we construct an integral representation for the partial adjoint L- 

function of Sp 4. More precisely, let 7r denote a generic cuspidal representation of 

Sp4(A ). Let Ad denote the ten dimensional irreducible adjoint representation of 

SO5(C), the L-group of Sp 4. To this data one can associate the ten dimensional 

partial Adjoint L-function Ls(Tr, Ad, s). We shall construct a Rankin-Selberg 

integral which represents this L-function. 

This construction uses an Eisenstein series on the double cover of Spin9 and 

the Theta  function on the double cover of Sp 4. The construction is in the spirit of 

the integral introduced in [G2], in the sense that it includes an integration over a 

unipotent subgroup which is of Heisenberg type. In the first section we introduce 

basic notations. In the second section we introduce the global Rankin--Selberg 

integral and show that  it is Eulerian. Finally, in Section 3 we compute the local 

unramified integrals. 
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1. N o t a t i o n  

A D J O I N T  L - F U N C T I O N  Isr. J. Math .  

1.1 Let G denote the group Spin 9. Since our construct ion involves a certain 

amount  of computa t ion  we give several relations in G needed later. First we label 

the roots  of G as 
O~1 O~2 Or3 Or4 

0 - -  0 - -  0 = 0 .  

Given a root  a we shall denote by x~(r )  the one dimensional unipotent  sub- 
4 group corresponding to a.  If  ot = ~--~i=1 ni~i  with ni >_ 0 we shall write 

(n ln2n3n4)  to represent a.  

A faithful representat ion for Spin 9 is obtained by restriction of the 16 dimen- 

sional representat ion of Spinyo to Spin 9. Using the embedding of Spinlo in E6 

we can easily give a matr ix  representat ion for Spin 9. We have 

X l o o o ( r )  = I q- r ( e s , 7  4- e6,s  --  e9,11 -- e lo ,12) ,  

X o l o o ( r )  = I q- r ( e3 ,5  q- e4,6 -- e l l , 13  -- e12,14), 

X o o l o ( r )  : I + r ( e2 ,3  q- e6,9 - eS , l l  - e14,15), 

xoool(r) = I + r(el,2 + e3,4 + e5,6 + e7,s - e9,10 - e11,12 - e13,14 - e15,1s) �9 

Here I denotes the 16 • 16 identi ty matr ix  and el,j is the 16 x 16 matr ix  which 

has 1 at the (i, j )  position and zero elsewhere. 

We shall denote the maximal  torus of G as h( t l ,  t2, t3, t4 )  where we parameter-  

ized it in a way tha t  h(t l ,  1, 1, 1) denotes the maximal  torus obtained from the 

embedding of the SL2 corresponding to the simple root  c~1, etc. Thus we can 

read from the Caf t an  matrix,  the action of the torus on the roots of G. For the 

simple roots  we have, 

hXlooo(r)h -1 = xlooo(t2t21r),  

hXoloo(r)h -1 = XOlOO(tllt2t~lr), 

hXoolo(r)h -1 : Xoo10(t21t2t-~2r), 

hzoool (r )h -1 = xooo1( t31t24r ), 

where h = h(t l ,  t2, t3, t4). 

Let us remark  tha t  since Spin 9 / { + 1 }  = SO9 one can deduce most  of the com- 

muta t ion  relations and most  of the matr ix  identities we need, from the s tandard  

matr ix  representat ion of SO9. 
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Let W denote the Weyl group of G. We denote by wi for 1 < i < 4 the four 

simple reflections corresponding to the simple roots ai .  If  w = wl lwi2 . . .wi~ we 

shall write w = w ( i l . . ,  ik) for short. 

For our construction we need to consider two maximal parabolic subgroups of 

G. First let Q = M U  denote the maximal parabolic whose Levi part  contains 

SL4. Thus as an algebraic group M may be identified with L = {g E GL4 : detg 

is a square}. U is a two step unipotent group which consists of all positive roots 

a = ~ n~a~ with n4 _~ 1. Let us describe more explicitly the identification of M 

with L. The simple roots are identified as 

(r) ( Xal 

IT) 
1 

1 
1 1 ) 

1 r 

1 
1 (1 :) 

x~3(r) ~ 1 1 " 

Thus from the action of the torus on the simple roots we have the following 

identification: (tl ) 
h( t l , t2 ,  t3, t4) --4 t i l t 2  t21t3 

The action of W on h(t l ,  t2, t3, t4) can be read via this embedding. Namely, the 

action of wi for 1 < i < 3 is the obvious one, and w4 acts as 

w4- diag(al,  a2, a3, a4) = diag(al,  a2, a3, a4 -1) 

where ala2a3a 4 is a square. 

L e t R = S p 4 U C M U = Q w h e r e  

Sp 4 =- { g E G L 4  :gt  

1)( 1)/ 
1 1 

- 1  g =  - 1  
- 1  - 1  
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and Sp 4 is embedded in M in the obvious way, i.e. via the identification of M 

with L. 

The second maximal parabolic is P = GL3. Spin 3 V. Thus V consists of all 

roots a = ~ n~ai for which n3 _ 1. 

We will need to study the space P\G/R .  We have 

LEMMA 1.1: There are six double cosets in P\G/R .  As representatives we can 

choose e; w(34), w(3214); w(32434); w(3423421) and w(342341234). 

Proof" First consider P\G/Q.  It  is not difficult to check that  [P\G/Q[ = 4 

and as representatives we may choose e; w(34); w(32434) and w(342341234). As 

representatives for P \ G / R  we may choose the set wvw where w C P \G/Q as 

above and vw E ( w - l p w  N SL4)\ SL4 / Sp 4. If w = e or w = w(342341234) then 

w-IpwNSL4 is a parabolic subgroup of SL4 whose Levi part  is GLa. Thus v~ = e 

in these cases. In the case o fw = w(34) or w = w(32434) the group w-IPwNSL4 

contains a parabolic subgroup of SL4 whose Levi part  is GL1 x GL2. In this case 

]w-lPw M SL4 \ SL4 / Sp 4 ] = 2 and as representatives we may choose v~ = e and 

v~ = w(21). Thus the lemma follows. I 

1.2 For the construction of our Eisenstein series we need to consider the double 

cover of G = Spin 9. In [M], Matsumoto constructed a unique double cover for 

the group G. We shall denote this group G. It  follows from [M] that  there is a 

cocycle a of G x G such that  

a(h(tb t2, t3, t4), h(rl, r2, r3, r4)) = (tl, rlr2)(t2, r2r3)(t3, r3) 

where ( , ) is the two order Hilbert symbol. 

Thus we shall identify G with the group of all pairs (g, r with g E G and 

E {+ l}  so that  (g1,~l)(g2,~2) = (glg2, a(gl,g2)elr 

Given a subgroup H of G, / : /will  denote its full inverse image in G. If there 

is a splitting homomorphism for H we shall identify H with its homomorphic 

image in G. When needed we shall describe the homomorphism explicity. When 

there is no confusion we shall write h for (h, 1). 

It  is not difficult to check that  when restricting from G to h : / - -  the double cover 

of M - -  one obtains on M, via its identification with L, the cocycle described 

in [K-P]. By abuse of notations we shall denote by a the cocycle of GL4 whose 

restriction to L coincides with the restriction from G. Also, since Spin 3 c P splits 



Vol. 95, 1996 D. GINZBURG 305 

under the cover it follows that  P0 = GL3 �9 Spin 3 .V is a well defined subgroup of 

/5. The restriction of a to G'-L3 is as given in [K-P], page 41 with c = 1. 

1.3. In this section we review some of the properties of the Weil representation. 

We refer the reader to [M-V-W] for details. 

Let H5 denote the Heisenberg group with five variables. We shall identify H5 

with the group of all (xl,  x2, Yl, Y2, z) with product given by 

(X l ,X2 ,  Yl ,Y2,  Z)(X'l, ' ' ' X2, Yl , Y2, zt)  ~- 

I I ! V Z ! I ! I X I ( X l + X l , X 2 " b x 2 ,  Y l + Y l , Y 2 - [ - Y 2 ,  z - k  " } - X l Y 2 n U X 2 Y l - - y l x 2 - - Y 2  i)" 

We shall also write (x, y, z) as elements of H5 where x = (xl, x2) and y = (Yl, Y2). 

Let F be a global field and A its ring of adeles. Let ~b denote a nontrivial 

additive character of F\A.  Let $(A 2) denote the space of all Schwartz functions 

on A 2. The Weil representation ~r is a representation of H5(A)Sp4(A ) which 

acts on S(A 2). Here we define SP4 as follows. Let Sp 4 be as defined in Section 

1.1. We define SP4 as the group of all (h,e)l where h �9 SP4 and e �9 {+l}  

with product (hi, el>l(h2, Z2>l = (hlh2, el(hi, h2)ele2)l where a l (h l ,  h2) is the 

cocycle obtained by restricting the cocycle of GL4 as defined in [K-P]. Thus 

(71 

((al)(hi 
a2 b2 

a21 ' b~ 1 

b 1 ' 
) =(al,bl)(a2, b2). 

Returning to the Weil representation, its action is given by 

b-1 a_l l 'el)r162 

1 r)) 
1 ' 

1 

r3 r l  1 e r  = e r  1 /2~  r l  
' r3 

1 
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Here ~ = (~1,~2), a,b �9 A*, e �9 {+l} ,  r~ �9 F,  r �9 S(A2), and 7t denotes the 

Well constant (see [W]). 

Next we define the theta  function on the group Hs(A) �9 Spa(A) by 

~EF 2 

where h E Hs(A), g �9 Sp4(A ) and r �9 S(A2). 

Finally we define a homomorphism r: U ~ Hs. For u �9 U write 

u=xooo1(xl)xoo11(x2)xo111(Yl)X1111(Y2)X1112(rl)xo122(r2)u' 

where u I is a product of all other one dimensional unipotent subgroups in U in 

any fixed order. Thus the roots in u' include (0012); (0112); (1122) and (1222). 

We define 

= ( x l ,  + 

This is a well defined homomorphism from U onto Hs. 

1.4 Let Ir be a cuspidal representation of SPa(A ). As usual we shall realize ~r 

in the space of L2,sp( Spa (F ) \  Spa(A)). We will assume that  ~ is generic. This 

means that  there exists ~ E ~r and a,  f~ E F* such that  the function 

1ri )(1 r3r4 
1 1 r2 r3 

1 - r l  1 
1 1 

g] r 

is nonzero for some g E Spa(A ). Write/~ = A#2 where A is square free. Since 

= w 2  " . -1  
O~-1 

it is enough to consider the case where ~ = 1 and/~ is square free. 

1.5. In this section we construct the Eisenstein series we use. Let 0 denote 

the theta  function on GL~(A) - -  the double cover of GL3(A). This function is 

constructed in [K-P] and for the properties we need see also [B-G]. Let ~/t for 

t E A* denote the global Well constant. We extend ~,o det to a function of 

G~-L3(A) in the obvious way. Next we extend the representation (~/o det)~ from 
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GL3(A) to P0(A) by letting it act trivially on Spin3(A)V(A ). Let ~p denote the 

modular function of P.  We view it as a function of Po by composing it with the 

projection Po --~ P. Given s E C let 

I(s) = ~ . ~ ( A )  mapo(h  ) (-~ o det)O | ~ . 

Thus Fs E I(s) is a smooth function F~ : G(A) --* ~ satisfying 

F,(pog) = $~(p0)~(det m)9(m)F,(g) 

for all Po = mr where m E G~'L3(A) and r E Spin3(A)V(A) and for all g E G(A). 

Here 9(rn)Fs(g) denotes the action of the theta representation. 

Since 8 is automorphic (see [K-P]) there is a GL3(F) invariant form g: 0 ~ C. 

Set j~(g) = g(Fs(g)). Thus we may define the Eisenstein series 

k(g,]~,s) = ~ ,  ]~(~g). 
"rEP(F)\G(F) 

This series converges for Re(s) large and admits a meromorphic continuation to 

the whole complex plane. 

2. The global integral 

Let ~ be a generic cusp form on Spa(A ). By Section 1.4 we may assume that 

W(l'~)(g) 7~ 0 for some A. Since we may choose any nontrivial additive character 

for the construction of the Well representation, one can check that our construc- 

tion of the global integral, which we shall soon define, is valid for any choice of 

A E F*. Hence we shall assume that ~r is such that [(lr )(1r3 
W~~ f\A~JR 1 1 --rl 1 r21 

1 

g r  + 1/2r2)~ 

is nonzero for some ~ and g E Spa(A ). 

Let Spa(A ) be embedded in G(A) via its embedding in L(A) C Q(A). 

denote this embedding by j .  We define 

(2.1) 

I(~, r is, 8) ---- JSfp,(F)\ Sp,(A) 

We 
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Here j(g) (resp. 9) stands for < j(g), 1 > (resp. < g, 1 >1). Thus the integral is 

well defined. Note also that if we define a character r on [U, U] as 

r = r + r2) 

where u ~ is a product of all other roots in [U, U] in any fixed order, then Sp4 fixes 

under the obvious action of Sp4 on [U, U]. Thus the U integration is indeed 

invariant under Sp4(F ). Since ~o is a cusp form, (2.1) converges absolutely for all 

s for which the Eisenstein series has no poles. 

To shorten the notation, we shall write g for j(g). Given is(g) as in Section 

1.5 let 

]w(g, s) = f(F\A)a ]s(Xlooo(rl)xoloo(r2)xlmo(r3)g)~b(rl)dri m 

Notice that the above 3 roots consist of the maximal unipotent subgroup of GL3 

as embedded in P.  Thus 

v .r ]w e map0(A ) ~ | (7 o det)W(0, ~b) 

where W(0, r  is the space of all functions of the form 

---, f j 8  r2 r h 
1 

h e G~-La(A). It follows from [P-P.S] and [B-G] that 14~(0, r  ~ 0 and that it is 

factorizable. 

Let U0 C U be the subgroup consisting of all roots in U omitting the root 

xllll(r). Thus dimU0 = 9. Let N denote the maximal unipotent subgroup of 

Sp4 consisting of upper triangular matrices. Finally, set w0 = w(342341234). We 

have 

THEOREM 2.1: For Re(s) large, 

Proof'. For simplicity we shall write I for I(~o, r is, s). For Re(s) large we unfold 

the Eiseustein series, and using Lemma 1.1 we get 

r : 
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where w runs over the representatives of P \ G / R  as described in Lemma 1.1 and 

R ~ = w - l p w  n R .  First we claim that if w is such that w x 1 1 1 2 ( r ) w  -1  �9 V or 

w x o 1 2 2 ( r 2 ) w  -1  �9 V then the contribution of this w to I is zero. Indeed, this 

follows from the fact that  

and hence we shall end up integrating ~b on F \A.  

I fw = e then clearly w x l l 1 2 ( r l ) w  -1  �9 V .  For w = w(34) we have wxo122w -1  = 

x0112 �9 V. For w = w(3214) we have WXol22W - 1  = x1222 �9 V and for w = 

w(3423421) we have WXo122 w - 1  -~ Xl l12  �9 V .  

Next consider w = w(32434). We have 

WXoIO0 w - 1  ~ X0122 ; WXllO0 w - 1  ~ X1122 ; WXOllO w - 1  ~ X0112 ; 

W X l l l 0  w - 1  __-- X1222; W X O l l l W  - 1  ~ X0001 ; W X l l l l  w - 1  ~ X l l l l .  

Before we proceed let us express the embedding of Sp4 in terms of the roots 

in G. Recall that  Sp4 is embedded in G via the embedding in SL4 which is a 

subgroup of L. The simple positive roots of SL4, as embedded in G, are (1000); 

(0100) and (0010). From this it is easy to deduce that N, the maximal unipotent 

subgroup of Sp4, is expressed in terms of the positive roots of G as follows: 

( 
/ 
/ 

lr ) 
1 

1 - r  --* X lOOO(r )xoo lo ( - r j ,  

1 11 :) 
1 ---* XllOO(r)x011o(r), 

1 ) 
1 r 

-- ,  x o l o o ( r ) ,  1 
1 

1 i) 1 
1 ---* XlllO(r) �9 

Returning back to w = w(32434) we see from the way the roots are permuted 

by w that R ~ contains as a normal subgroup the group generated by the roots 
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X01o0(r);xllo0(r)x01m(r);xlllo(r); Xoln(r)  and xllll(r). Notice that the first 

three form the Siegel radical in Spa. Notice also that  )~ (wx~(r)g, s) = ]~(wg, s) 
for r E A and a is any of the above roots. Thus after a suitable change of 

variables we obtain as an inner integral 

(2.2) 

I 1 r 3 r 4 
~( 1 r 2 r 3 ~0 

F\A)5 l 
I 

g ~ (o,v,o) 1 T2 1 g dridy 

where as before y = (yl, Y2)- We have (see Section 1.3) 

I1 

~ (o,y,o) ( 

---- ~ cor 
1 

~EF 2 

1 r2 
1 g 

g r162 + ~2y2) 

where ~ = (~1, ~2). Thus carrying out the y integration in (2.2) we obtain 

[(1 [( 3 
jr( 1 r2 r3 1 r 2 ~o g w,) g r  

F\A)3 1 1 
1 

~(F 1 r~ r 3 = ~(9)r ~ g dr, .  
\A)3 1 

1 

By cuspidality of ~o the last integral vanishes. Thus the contribution from w to I 

is zero. We are left with w -- w0. To compute R wo we use the following relations: 

(2.3) 

WOXOIOOWo 1 --~ X0100; 

WoXooIOWo 1 -~ Xl000; 
WoXollOWo 1 -~- X1122; 

W o X l l l l I o  1 --~ X0001. 

WOXlOOOWo 1 -~- X0012; 

WOXllOOWo 1 -~- X0112; 
W0Xlll0Wo 1 -~- Xll12; 

From this we may conclude that R wo = Ql(Xllll(y2)l where Q1 is the parabolic 

subgroup of Sp 4 which preserves a line. Thus 

I=/Q,(F)\Sp,(A) fF\ .  /Vo(,) ~(g)Or176 " 
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Using Section 1.3 we have 

\A \a  fl,f2EF 

= E ~ (,(~)g),(o, ~). 
~eF 

Thus 

1 (F)\ SP4(A) o(A) ~eF 

Write Q1 = (GL1 x SL2) �9 N1. Thus 

N1 = 1 1 
1 - z l  1 

1 

and it is embedded in G as 

X l O O O ( Z 1 ) X O O I O ( - - Z I ) X O l l O ( Z 2 ) X l l o O ( Z 2 ) X l l I O ( Z 3 )  �9 

From relations (2.3) we obtain 

(2.4) 
L(wox,ooo(z,)xoo,o(-zl)xo,~o(z=)xl,oo(z:)=~,,o(z~)"g) 

= L (XI000(Z1)Xll00(Z2)W0Ug) �9 

Also from Section 1.3 we deduce [i 1z11 )(1 z z3) ] 1  
T(u)g r = ~(~(u)9)r 

1 - z l  1 
1 1 

From this and from (2.4) we get 

I=fGL~(F)SL2(F)NI(A)\SP4(A)J~(F,A)~/Uo(A) 

1 --Zl 1 g 
1 

~r162 . 
~,~.F 
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Next we consider the following Fourier expansion: 

g dz3 \A 1 
1 

~( 1 0 r2 
vl,,72eV F\A)3 1 --rl g r + rl~r2)dridz3. 

1 

The group GLI(F)  x SL2(F), as embedded above, acts on the set (rh,r72) with 

two orbits. By cuspidality of ~, the trivial orbit contributes zero to the above 

integral. For the open orbit representative we choose (-1,0). The stabilizer in 

GLI (F )  x SL2(F) is G L ~ ( F ) -  N2(F) embedded in Sp4(F ) as 

Thus after a suitable change of variables in ri we obtain 

I----~L~(F)N2(F)NI(A)\Sp4(A) ~(F\A)S ~Uo(A) 

~o I - I  I g 

o)r (T(U)g)r ~)L (Xl000(Z1)XllOO(Z2)woug)~)(--rl q- Zl )drldzjdudg. 
~EF 

Thus, since N = N1N2, 

I=/GL~(F)N(A)kSP,(A) ~(FkA)6 /Uo(A) 

1 - r l  1 g 
1 1 [(1 ) 

E w e  1 m 
1 r(u)g 

~eF 1 

L [xlooo(zl)xo,oo(m)xlloo(Z2)WoUg]r + zl)dmdridzjdud9. 
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Consider the contr ibut ion from ~ = 0. By Section 1.3 

(1 1 m 
c~ 1 ) r(~)g] r = cow(r(~)g). 

Thus we obta in  as an inner integral 

~(F\A) 6 
(1T11 1 ll)/1 1 mTZ3)]l r21 

is [XlOOO(Zl)xOlOO(m)XlloO(z2)woUff]~(--rl + zl)dridmdzj. 

By means of Fourier expansion this equals [(1 )(1 r z:)] 
~ g 

F\A)7 1 - r l  1 
1 

f~ [Xlooo(Zl)Xoloo(m + t)xlloo(z2)woug] r  + zl + rlt)dr, dmdzjdt  . 

Provided ~ ~ 0, the integration over zl, t and z2 defines a Whi t taker  functional 

on the space of 0. However it follows from [K-P] tha t  such a functional is zero. 

On the other hand if r] = 0, after a change of variables in t, we obtain  as an inner 

integral 

which is zero by cuspidali ty of ~o. 

r z3)] 
m r2 h dmdr2dz3 
1 

1 

Thus the contr ibut ion of ~ = 0 to I is zero. 

Hence we may replace the sum over ~ E F by ~ E F* and from the action of GL1 zx 

on (0, ~) we obtain  

1 

1 ~(~)g r 
1 

rl )(1 r z3)] 
1 1 m r2 

1 - r l  1 g 
1 1 

)~ [xlo00(zl)xoloo(m)xllo0(z2)woug] r  + z])dmdr,dz jdudg.  
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Since 

this equals 

l m  ) 
1 r(u)g 

1 

r 1) = r162 (~(~)g)r ~) 

[(1T1 )(1 z3)] 
I = qa 1 - r l  1 g 

(A)\ SP4 (A) F\A) 6 (A) 1 1 

.J, (r(u)g)r 1)• [zlooo(zl)xoloo(m)xlloo(z2)woug] 
r  + zl + 1/2m)dmdridzjdudg. 

Write 

f(~\A)2 L [xxooo(zl)xo~oo(m)~, ~oo(z2)wo~g] r 

~- Z / L [XlooO(Zl)xOlOO(m d- t)XllOO(Z2)woug]~3(Zl Jr ~t)dzidt . 
~EF J(F\A) 3 

As in the above, if r / r  0 the integral vanishes. Thus 

I = ~o 1 - r l  1 g 
(A)\ SpdA) \A) 7 (A) 1 1 

r  + 1/2m + Zl)dmdtdrldzfludg. 

A change of variables in t and we are done. | 

I t  follows from Theorem 2.1 that  I (~ ,  r f , ,  s) is factorizable. More precisely, 

write ~r | w~ ~ (~) r = |162 and I(s) = | If  ~o and ]~ are chosen 

so that  W~ = | and ]w = | ) then 

~(~,~,]o,~) = II ~(w~,~,]~ ),~) 
v 

where 

~(w~, ~ , . ~ ,  ~) = W~(g)~ ~) (,(,~)g) 
(F.)\ SpdF~) o(F~) 

~(o, 1)]~)(wo,~g, s)d~eg. 
This relation holds for Re(s) large. 
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3. T h e  u n r a m i f i e d  c o m p u t a t i o n  

In this section we assume that F is a local nonarchimedean field. Let 7r be 

an irreducible admissible generic representation of Sp4. Let r be a nontrivial 

additive character of F and denote by w~ the Weil representation of H5 �9 Sp 4. 

This representation acts on S ( F  2) as described in Section 1.3. Let ~ denote the 

theta representation on G~'L3 and denote by W(0, r  its Whittaker model. Thus 

I~o E l/V(0, ~P) is a smooth function on G~'L3 satisfying 

[(, x 
(3.1) 1 z g = 

1 

for g E G~'L3 �9 Let I(s) -- IndTo (6~,. (7 o det) |  W(0, r  Thus ]w E I(s)satisfies 

(3.2) ]w (gmv, s) = I7r (g)~p (g)f(det  g) 

for g E GL3, m E Spin a and v E V. Here ~ is the local Weil constant. It is easy 

to check that ~(h(al ,  a2, 33, a4)) = ]a3[ 58. 

Our local integral is 

: i<,o 
where r E $(F 2) and Wo = w(342341234). As in the global case we denote g for 

j(g). 
Let (,) denote the local quadratic Hilbert symbol. We shall write 3't for ?(t)  

if t E F*. Thus 3'3% = (a, b)'rab and, since (e, #) = 1, if E, p are units we have 

% = 1. The local computation of the integral involves some local calculations of 

a(gl,g2) in G. However, for most purposes we will need to know a(gl,g2) with 

g~ E M. Identifying M with L (see Section 1.1) we may use the algorithm of 

computing the cocycle in GL4, as described in [K-P] or more explicitly in [B-H], 

to compute a(gl, g~). 
We shall denote by O the ring of integers in F and by O* the units in O. If 

p denotes a generator of the maximal ideal in O we let q-1 = IPl. All additive 

measures are chosen so that fo dx = 1 and all multiplicative measures satisfy 

fo. d*x = 1. 
Let H be a reductive group. We denote by K(H) its standard maximal com- 

pact subgroup. The group K(G) splits in G. We shall describe the splitting 
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homomorphism of K(G) when restricted to an embedding of SL2 corresponding 

to a simple root. For k E K(Spin3) we have k ~ (k, 1). For k E K(GL2),  where 

the GL2 corresponds to one of the a~, 1 < i < 3, we have k --* (k, A(k)) where 

(3.3' A (  ac ~ ] = { (c,d(ad-bC))l 0<:[cl<l]c[=0,1 

In this section all functions are assumed to be unramified. Thus we assume 

that  there exists W E W(~r, r  such that  W(k) = W(e) = 1 for all k C K(Sp4). 

We also let r denote the unramified vector in S(F2).  Thus r  = 1 if 

]xil _< 1 and zero otherwise. We let ]w denote the K(a) fixed vector in I(s). 
This implies that  I'Vo is the K(GL3) fixed vector in W(0 , r  with I~0(e) = 1. 

Hence r is one on (9. We need to know the value of l~0 on the torus. Prom (3.1) 

it follows that  12Vo(t) = 0 unless 

with m >_ 0, n, r E Z and r E O*. On t as above it follows from [B-G] that  

w0(t) = /  /ff(t)-yp. m - o(2) (3.4) 
( 0 m -= 1(2) 

where B3 denotes the standard Borel subgroup of GL3 and 5B3 its modular  

function. From (3.2) and (3.4) we obtain 

(3.5) (a) ]w (h(a, a 2, a2b, abc), s) = 5~p (h(a, a 2, a2b, abc))%iTVo a 
b 

= ]a2b]5~%lTVo a = lall~ . 
b 

Next we describe the local adjoint L-function. By our assumption on ~r we 

may assume that  7r = Ind sp* (#1, #~) where B is the standard Borel subgroup of 

Sp4,  i.e. B D N. We have 

(.1, ~2) b �9 
b-1 

a - 1  

= #1 (a)#2(b)]a4b2 I. 
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From general theory we may associate to 7r a semisimple conjugacy class in 

SO5(C). We choose as a representative 

t ,  = diag (#I(P), ]22(P), 1, ]221(p), #~-X(p)). 

Let Ad denote the adjoint representation of SO5(C). Its dimension is 10. We 

have 
A(p) = Ad(t , )  

= diag (]21 (P)]22(P), ]21(P)]22 I(P), ]21 (P), ]22(P), 

1, 1, ]2~-x (p), ]2~-1 (p), ]211(p)]22(p), #~-1 (p)]221 (p)). 

We define the local Adjoint L-function 

LQr, Ad, s) = det [Ix0 - A(p)q -8] -x 

where 11o is the 10 x 10 identity matrix and s E C. 

Finally we let ~(s) = (1 - q-~)-I  denote the local zeta function. Our main 

Theorem: 

THEOREM 3.1: Assume that q is odd. 
large 

(3.6) 

Proof 

For all unramified data and for Re(s) 

I(W, r ]w, s) = LQr, Ad, 5s - 2) 
((10s - 2)((10s - 3)((10s - 4)((20s - 8)" 

Write I for I(W, r ]w, s). We start with the Iwasawa decomposition of 

Sp 4. Denote h(a, b) = diag(a, b, b -1, a - I ) .  Via the embedding of SP4 in G, as 

explained in Section 1.1 we identify h(a, b) in L with h(a, ab, a, 1) in G. 

Choosing the measure on K(Spa ) to be one, we obtain 

I=  f((F',: /Uo W(h(a,b))wr162 

]w (wouh( a, ab, a, 1), s)]a 4b2[- l dud'ad* b. 

The roots in Uo are: (0001); (0011); (0111); (0012); (0112); (1112); (0122); 

(1122); (1222). We conjugate h(a, b) across T(U) and h(a, ab, a, 1) across u. A 

change of variables in U0 will contribute la] -1 and hence 

I--  f(F*)2 /vo W(h(a'b))wr162 

b,  d'b 
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From Section 1.1, i.e. from the description of the action of the Weyl group 

of G on its roots, we may deduce that woh(a, ab, b, 1)Wo 1 = h(a, ab, a, a). We 

need to check if there is a cocycle contribution from this conjugation. Recall 

( that wo = w3w4w2w3w4wlw2w3w4, where w~ is the image of - 1  

Since w4 is in Spin3, conjugation by w4 will contribute no cocycle. We have (see 

Section 1.1) w4 diag(a, b, b -1, a -1) = diag(a, b, b -1, a). Next consider the action 

of w3. We have w3 �9 diag(a, b, b -1, a) = diag(a, b, a, b- l ) .  This conjugation will 

contribute the cocycle 

[(11 10)(a )] a 0 ' b -1 

--1 a 

"(7 
a ' 0 1 " 

b -1 - 1  0 

We remind the reader (see Section 1.1) that  by abuse of notation we denote by 

a the cocycle on L obtained by restriction from G. Using [B-HI the above cocy- 

cle equals (a, b)(-1,  a). The conjugation w2 diag(a, b, a, b -1) = diag(a, a, b, b -1) 

contributes (a, b)(-1,  a). Next wl, w4 and w3 each contributes one. Then w2 con- 

tributes (a ,b) ( -1 ,  b) and finally w3 also contributes (a ,b) ( -1 ,  b). Thus, overall, 

we get no contribution from the wo conjugation. Using Section 1.3 we obtain 

]w ( h(a, ab, a, a)wou, s)"/ab(a, b )lal-9/2lbr 3/2dud*ad*b. 

Write W ( h( a, b ) ) = ~ ~/2 ( h( a, b ) ) K ( h( a, b ) ) . Then changing variables a ~ ab we 

get 

]w (h(ab, ab ~, ab, ab)wou, ~)~o(ab, b) lal-5/~lbV3dud" ad'b. 

The embedding of h(ab, ab2,ab, ab) in L is diag(ab, b,b-l,  ab) and hence the 

equality h(b, b 2, b, b)h(a, a, a, a) = h(ab, ab 2, ab, ab) contributes a symbol (a, b). 

Also, it follows from (3.5) that 

]w (~(b, b ~, b, b)g, 8) = Ibls"+~(b, b)]~(g ,  ~) 
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for all g E G. Thus 

I = ~(F.)2 

D. GINZBURG 

K (h(ab, b) 

]w ( H ( a )wou, s ) % la[- 5 /2Ib[hS- 2 dud*ad* b 

where H(a) = h(a, a, a, a). From Section 1.3 we get, for u E U0, 
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~v~ (v(u))r b) = r b + x2)r + z4 + by1 ) 

where r (u )  = (xl,  x2, Yl, 0, zl + z4) and 

u=xoool(Xl)xooll(x2)xolll(Yl)Xll12(zl)xo122(z4)u'. 

From the properties of r we obtain that if Ixll > 1 the integral vanishes. Also 

K(h(ab, b)) = 0 if Ib] > 1 and hence the condition [b + x2[ < 1 implies that 

Ix21 < 1. Thus the integration over xl and x~ is restricted to Ix1[, Ix21 _< 1. Let 

Ul C U0 be generated by the roots (0111); (0012); (0112); (1112); (0122); (1122); 

(1222). Using the right K(G) invarianee property we get 

]w (H(a)wou, s)Talal-5/21b[S~-2d* ad*bdu 

where 

(3.6) u=ZOlll(Yl)Xll12(Zl)Xl122(z2)x1222(z3)xo122(z4)xol12(Zh)xoo12(z6). 

We claim that we may ignore the Zh, z6 integration. To do that consider the 

function 

F(zh, z6) = ~ fw(H(a)wou, s)r + z4)dzldz2dz3dz4 

where u is parameterized as in (3.6). Let [tlh It2l <_ 1. Then 

F(Zh, z6) = ~ 4  ]w (H(a)wouxlooo(tl)xnoo(t2), s)r + zt)dzldz2dz3dz4 

= IF4 ]w (g(a)wOxlOoo(tl)xlloo(t2)u, s)r  + z4 - tlz5 - t2z6)dzldz2dz3dz4 

= r  - t2z6)F(zh, z6). 
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Here we used a change of variables in u and the relations WoXloooWo 1 = xoo12 
and woxlloowo 1 = Xo112. Since ]w is left invariant by x0o12 and Xo112 the  last 

equali ty follows. Hence F(zs, z6) = 0 if Izhl > 1 or Iz61 > 1. Write wo = ~w(4234)  

where ~ = w(32143). Hence 

I =  f(,~..)2 JR 5K(h(ab'b)) 

/w (H(a)~xlooo(Z1)X,llo(z2)xlle2(z3)xoolo(z4)xoo,l(-y1), s) 
~P(zl + z, + byl)'~lal-5/21blhS-2dzidyld* ad*b. 

We know tha t  g(h(ab, b)) = 0 if lal > 1 or [b[ > 1. For lal < 1 and Ibl < 1 

write a = p ' c l  and b = pine2 with n,m > O. Since H(pnr = H(p'~)H(c) 
contr ibutes  a symbol  (pn, r which cancels with (pn, c) obta ined from the relat ion 

"Yv~E = "Yp- (Pn, ~), we get 

[= ~ K(h(p'~+m,p'~))J(n,m)'Tp.q 5'~/2+(-5~+2)'~ 
rt,trtmO 

where 

J(n, m) = fF~ ]w (H(P'~)wxlooo(Z1)XlllO(Z2)Xl122(z3)xoolo(z4)xOOll(-Yl), s) 

r + z4 + pmyl)dzidyl . 

We need to compute  J(n, m). Define, for n >_ 0, 

J(n) = IF3 ]w (g(P'~)w(321)Xlooo(Zl)X,mo(Z2)xlno(Z3), s)r 

and let J(n) = 0 for n < 0. Also, let 

a ( p , r  = ~ (P, ~ ) r  
~e(OlP)- 

where ~P denotes the max ima l  ideal in (9. We have 

LEMMA 3.2: For n, m >_ 0 

( ( 1 0 s  - 4)  
J(n,m) = ((10s  3) [(1 - q(-l~ 

+ q-15"+3(p, pn-1)G(p, r  - q(-l~ - 1)]. 



Vol. 95, 1996 D. GINZBURG 321 

Proof: To prove the Lemma we use the Iwasawa decomposition for z4 first and 

then Yl. Before going into details, recall the following SL2 decomposition: 

(3�9 ( 1 )  ( 1  ~ ) =  ( r  -1 - 1 )  ( - 1  ) 
--1 r --r -1 --1 / " 

The symbol coming out from this multiplication is one (see [B-HI), however since 

^ - r  -1 - 1  = (r,r), there is a symbol contribution of (r,r) from this fac- 

torization. Thus 

J(n, m) = ~ ]w [H(P'~)w(a214)xlooo(zs)xnoo(z2)xm2(za) 

Xoool ( yl )w( 3 )xoo lo( Za ), s] 
�9 r + Za + pmyl)dzidyl 

= JF" ]w [H(pn)w(3214)Xlooo(Zl)XlloO(z2)xll12(z3)xoool(Yl), s] 

�9 r  + pmyx)dzidyl 

+ fF" ftz,,>l fW[H(p'~)w(3214)xl~176176176176 

Xoool(yl)xoolo(-Z41 )h(1, 1, z41, 1), s] (z4, za)r + z4 + p'nyl)dzidyl 

where the last equality comes from breaking the z4 integration into Iz41 < 1 

and Iz41 > 1, and (z4, z4) is contributed from the Iwasawa decomposition of 

w(3)Xoolo(z4) as explained in (3.7)�9 Write 11 (resp. /2) for the first (resp. second) 

summand.  In I1 we separate the Yl integration into lYl] <- 1 and lYll > 1. In the 

lyll > 1 domain we also perform the Iwasawa decomposition (3�9 for the root 

Xoool(yl). Since this root is in Spin3, no symbol is added. Thus 

I1 =/p3 ]w (H(p")w(321)x]ooo(z])xllOO(Z2)xluo(Z3), s)~b(zl)dzi 

"~ JF 3 f]yl,)l ]W(H(Rn)w(321)xlOOO(Z1) 

xuoo(z2)xmo(z3)xoool(-y~l)h(1, 1, 1, yi-1), s ) r  + pmyl)dzidyl . 

We used the fact that  since m >_ O, pray1 E (9 if ]Yl] < 1. Notice that  the first 

term is J(n). In the second term we may conjugate x0001(-y~ -1) across and then 

conjugate h(1, 1, 1, y~-l). We get 

II = J(n)+ /F 3 j(l~,l>l ]w(H(pn)h(1,1, y'12,yl)w(321) 

XlOOO(Zl)XllOO(Z2)XlllO(Z3), S)r  + pmyl)tyll2dz~dyl . 
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We used the relation (which contributes no cocycle) 

w(321)h(1, 1, 1, y~-l)w(321)-~ = h(1, 1, y~-2, Yl) 

and the lyll 2 appears from the change of variables z3 --* y~z3 which arises from 

the conjugation of h(1, 1, 1, y~-l) across the unipotent matrices. We have from 

(3.5) 

f w  (h(1, 1, y~-2, Yl)g, s) = lYl I-x~ s) . 

Thus 

where 

11 = J(n) + 9(y~l>l IYll-l~ 

�9 IF s ]W (g(pn)w(321)XlOOO(Zl)XllOO(Z2)XlllO(Z3), 8)r  )dzi 

= L(m)J(n) 

f 
L(m) = 1 + / lYli-l~162 I 

Jly 

It follows from [G1] that  

L(m)-  r  ( 1 -  q(-los+4)(,n+l)) . 
r 3) 

Next we consider 12. We conjugate xoolo(-z~ 1) and h(1, 1, z~ -], 1). The torus 
h(1, 1, z~ -1, 1) is identified with diag(1, 1, z~ -1, z4) in L and one can check that  no 

cocyclc is contributed from the relation 

w(3214)h(1, 1, z41, 1)w(3214) -1 = h(1, z41 , z4 2, z41 ) 

and hence 

12= IF" f1~41>1 ]W(H(pn)h(1'z-~l'z42'z~1)w(3214) 

XlOOO(Zl)XllOO(Z2)Xlll2(Z3)XoooI(Yl), 8) 

(z4, z4)iz4i3r + z4 + p~yl)dz~dyl 

where ]z4] 3 is obtained from change of variables. 
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Write H(p n ) h(1, z~- 1, z4 2, 241 ) = h(z41,  z4 2 ' z43, 24 4 ) H(z4p,~). This relation 

contributes the cocycle (pnz4, z4). Thus using (3.5) 

12 =/~4 flz, l>l ]W(H(z4p'~)w(3214)x'~176176176176176176176 

~(Zl + z4 -~-pmz4Yx)(Z4pn , z4)lz41-158+3dzidyl . 

Next we break the Yl integration into lYll < 1 and [Yl[ > 1. We obtain 

/ 2 = / F  3 .~lz41>l ]w(n(z4pn)w(321)x1~176176176176176 

L 
X ll00 (Z2)Xlll0 (Z3)W4X0001 (Yl), 8) 

r + z4 + p'~ z4Yl)lz41-1ss+3(z4,p'~ z4)dyldzi �9 

In the second term we write the Iwasawa decomposition for W4Xooox(Yx). Then 

repeating the same steps as in the computation of It we obtain 

I2 = fF 3 flz4,>l]W(g(z4prn)w(321)xlooo(Zl)XllOO(Z2)XlllO(Z3),8) 

r + zt)lz41-15s+z(z,, p~z4) 

(Jy11<_l ~(pmz4Yl)dyl+fly11>1 [Yll-l~162 dzi" 

Write fl~,l>l = E~--1 fill=l" Thus 

oo 

~(zl + p-r e)q(-15s+a)r(p-r E, pn-r ~) 

(flull<lr162 

The factorization H(p'~-~E) = H(p'~-~)H(~) gives a (pn-~,~) contribution. 

Conjugating H(r to the right and using the K(G) right invariance property 



324 ADJOINT L-FUNCTION Isr. J. Math. 

of ]w, we obtain  

o o  

I2 = ~ J(n - r)q(-15s+4)~(pr,p '~-r) 

~ l=l(p ~, ~)r e)d6 . 

The  last  integral  is zero unless r = 1 and for r = 1 it equals q-lG(p, ~b). Thus  

12 =J(n - 1 ) q ( -  1 5 s+3 )~  (p, p,,- 1)a(p, r  

(fly, i<1 "-1 d r  Yl) Yl-F i lyl l>l  lyli-l~162 

I t  is easy to see t ha t  if m = 0 the  sum of the integrals equals zero and for m > 0 

we get L(m - 1). The  L e m m a  follows. | 

We compu te  J(n). Write J(n) = R l ( n )  + R2(n)  where 

RI(n) =/~2 ]w (H(pn)w(32)Xoloo(z2)xo110(z3), s)dzi 

and 

= f . .  

For- g >_ O, let 

M(g) = JR/' ]iv (H(p')w(321)xlooo(P-1)xllOO(Z2)XHlo(Z3), s)dzi . 

We have 

LEMMA 3.3: For k >_ 0 

J (2k)  = Rl (2k)  - M(2k) ,  

J(2k + 1) = G(p, r  + 1) . 

Proof: Let us show tha t  R l (2k  + 1) = 0. Indeed,  change variables z2 --+ ez2 

with  161 = 1. Using the relat ion 

h(1,6,  6, ~)Xoloo(z2)h(1, e, 6, ~)-1 = xoloo(ez2) 
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we obtain by the right invariance properties of ]w 

Rl(n) = .[~2 ]w ( g (p" )w( 32 )h(1, ~, ~, $ )xoloo( z2 )XOl lO( Z3 ) , s ) dz, 

= .;~.2 ]w (g(P'~)h(1, 1, r r s)dz, 

= (P'~, ~) JF 2 ]W (H(P'~)w(32)Xoloo(z2)xollO(Z3), s)dzi 

= (pn,~)Rl(n) . 

Here the cocycle (p'~, e) is obtained from the conjugation of the tori elements. 

Also we used (3.5). Thus Rl(2k + 1) = 0. 

Next consider R2(n). We have 

o o  

R2(n)=/F ~lq~ = I=1 ]w(H(pn)w(321)xl~176176 

�9 z11oo(z2)zlllo(z3), s)~(p-~c)dedzi. 

We have 

and 

h(r ~, ~, 1)XlOOO(P-~)h(~, ~, ~, 1) -1 = xlooo(P-~ e) 

w(321)h(e, e, e, 1)w(321) -1 = h(1, 1, e, e) . 

As before the conjugation of H(p n) with h(1, 1, e, e) contributes a cocycle (p~, e). 

Thus 

n2(n) = JR E qr ]W( H(p'~)w(321)x1~176176176176176 ' s)dzi 
2 r----1 

J~Jsl=l (p'~' e)r e)de" 

The last integral is zero if r > 1. For r = 1 we have (see [G2]) 

~ { _ q - i  n = 0(2), 
(p", E)!~(p- 1~)dr = 

I=1 q-iG(p,r n - 1 ( 2 ) .  

From this the Lemma follows. | 

We continue with the computation of M(t). 
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LEMMA 3.4: We have 

and 

~(10s - 3).(_20~+3)k_lOs+3 
M(2k) = ~(-~s---~)" 

M(2k + 1 ) -  ~ (10s -  4).(_ms_l)~_ms+l ( 1 -  q(-lo~+4)(k+~)) . 
r 2) ~ 

Proo~ Write the Iwasawa decomposition for WlXlOOO(P -1 ) (see (3.7)). We get 

M(g) = (p, p) fF 2 ]W (H(pe)w(32)xoloo(z2)xollO(Z3)Xlooo(p)h(P, 1, 1, 1), s)dzi 

where the (p,p) is obtained from this Iwasawa decomposition. Conjugating 

Xlooo(P) across the unipotent elements we get 

x o l o o ( z ~ ) x o l l o ( z 3 ) x l o 9 o ( p )  = x.oo(p~2)~zoloo(z2)zollo(z3) 

where u is such that 

]w (H(pe)w(32)ug, s) = fw  (H(pe)w(32)g, s) . 

Since w(32)xlmo(pz~)w(32) -1 = XlOOo(PZ2) we obtain using (3.1) 

(P' P) j~,f2 ]w ( H (ve)w( 3Z )xoxgo( z~)zoim(z3)h(p, 1,1,1), s)r  e+l z2)dz, M(g) b 

Conjugating the torus across we get 

I F  s g+l e+l M(g) = (pe+l, p)q~ 2 ]w (h(p , p , p , p )w(32)xoloo(z2)xol lO(Z3), 8) 

~b(pez2)dzi. 

The (pC,p) factor is from the product H(pt)h(p, p, p, 1) = h(pe+t,p ~+1, pt+l, pC) 
and q2 is obtained from changing variables in z2 and z3. Separating the z2 
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inter;ration into [z2t _< 1 and [z2[ > 1, we obtain 

M(~) : (pg+l p)q2 [.IF]W(h(Pbt-I'P~-t-I'pe+I'ps 

+ 

�9 ~(ptz2)dzi] 

= (pe+l, ;)q2 []Iv (h(P ~+I, pe+l, ;e+l, pe), s) 

. z -1 1), s)(z3, za)dz3 + fw(h(Pe+~,Pe+~,P~+l,Pe)h(1, 1, 3 , 
I ~1>1 

+ fF ~-~q~/~ f-w(h(P~+l'Pe+l'Pt+l'P~)W(3)X~176176176176176 
r = l  ] = 1  

�9 r162 

Here we used the Iwasawa decomposition for z3 and also flz2l>l = Er%I  fle[=l' 

Thus, 

M(e) = (pe+~, p)q2 []w (h(p e+l,/+1, pe+,, pe), s) 

oc 
fE E q~]w (h(P e+l, pe+l, p~+l, pe)w(3)Xomo(Z3)W(2)Xmoo(P-.), s)dz3 

fle (Pe-l'e)~/'(P*-re)dr 1 

Suppose f = 2k. From (3.4) it follows that  ]w (h(P 2k+l,p2k+l,p2k+l,p2k), s) = 0. 

Thus 

o o  

M(2k) = (p, p)q2 s ~ qrfw (~(p:~+l, p2~+l, p:k+,, p:k) 
r = l  

�9 w(3)zomo(za)w(2)xoloo(p-~),s)dz3/ (p,e)r IEl=l 
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The last integral vanishes unless r -- 2k + 1. Thus 

M(2k) = (p, p)q2k+2G(p, ~b) 

F]W (h(p2k+l,p2~+l,p2k+l,p2k)W(3)X0010(Z3)W(2)X0100(P--2k--1), dza S) 
= q2k+2G(p, r  

/r]w (h(p:k+l, p: )w(3)x0olo(z3)h(1, V2k+l 1, 1), s)dz3. 
Here the (p,p) factor is cancelled by (p2k+l,p2~+1) obtained from the Iwasawa 

decomposition. Thus 

M(2k) = qgk+3C(p, r  ]w (h(P 2k+1, p4k+2, p4k+2, p2k)w(3)XOOlO(Z3) ' s)dz3 

= q4k+3G(p' r IF ]W (W(3)XooIo(Z3), s)dz3 

where we used (3.4) and (3.5). It follows from [R-S] that ~pG(p, r  = ql/2. Hence 

3l>1 

= q(-2o~+a)k-los+3 1 + E(p-~,p-~)q (-s~+a/2)~ "~p-~de . 
r = l  ] =1 

The last integral is zero unless r is even, and in this case it equals 1 - q-1. Thus 

M(2k) = q(-2o~+a)k-lo~+3 1 + (1 - q- l )  q(-lo~+a),- 
r~---1 

_ ~(lOs - 3)~(-2o~+a)k-lo,+3 

Next we consider the case e = 2k + 1. We have 

M(2k + 1) = q2 ]]w (h(P 2k+2, p2k+2, p~k+2, p2~+ 1), s) 

fF 2k+2 2k+2 2k+2 2k+1 r E q~]w(h(p ,p ,p ,p )w(3)Xoolo(z3)w(2)Xoloo(P- ),s)dz3 
r = l  

" jf[e]=l ~(P2k-r+l$)dE] " 
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]w (h(P 2k+2, p2k+2 p2k+2, p2k+l), s) = q-(2k+2)5s-k-1. 

Also, as in the computat ion for M(2k) 

/ z  ~(10s - 3) 
1 + (z3, z3)'yz~llz31-58+l/2dz3 = ~(10s 2) " 

31>1 

The integral 

1 - q  1 r < 2 k + l  
f~  ~b(p2k-~+le)de = _q-1 2k 2 r + 

I=1 0 r > 2 k + 2  

Thus 

2 ]'(:(lOs - 3) ,-(2k+2)5,-k-1 M(2  + 1)=q 2)q 

r 2k+l 
+ JF ~-" q~(1--q-1)]w(h(p2k+2'P2k+2'P2k+2'P2k+l) 

r-~l 
w( 3 )Xoom( Z3 )W( 2 )Xo loo(P-r ), s ) dza 

_ q~+l fF ]w (h(p ~+2, p:~+:, p:~+~, ~+1) 

W( 3 )XOOlO( Z3 )W( 2 )XOlOO(p-2k- 2), s)dz3] . 

Next we write the Iwasawa decomposition for w(2)xoloo(P -~) for 1 < r < 2k + 2. 
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We get 

M(2k + 1) = q2 [(( lOs - 3)a_(2k+2)5s_k_ 1 
2) 

2 k + l  

+ (1 - q - l )  E qr(pr,pr)IF ]w(h(p2k+2'P2k+2'P2k+2'P2k+l) 

w(3)XOOlO(Za)h(1, ; r ,  1, 1), s)dz3 - qZk+l IF ]w (h(P 2k+2, p2k+2, ;2k+2, V2k+~) 

w( 3 )zoo~o( za ) h(1, p~+~, 1,1), s ) dz~] 

2 [ ( (10s - 3) q-(2k+2)5~-k-~ 

2 k + l  

+ (1 - q-l) Z q2~(p~,p~)~ ]w(h(p2k+2,p2k+~+2,p2k+r+2,p2~:+l) 
r = l  

�9 W(3)XooIO(Z3) , s)dz3 

_ qak+3 JF f ]w(h(P2k+2'p4k+g'Pak+4'P2k+l)W(3)XOOlO(Z3)'s)dz3] " 

We have, using (3.5), that 

]14/(h(p2k+2,p4k+4,p4k+4,p2k+l),  S) : q-(4kT4)5s--k-1. 

Also, as before in the case of M(2k), we have 

((10s - 3) J ] w  (w(3)XOOlO(Z~), s)~z~ - ((lOs 2) 

Thus the third summand equals 

((10s - 3) q(-2Os+3)k-2Os+2 
((10s 2) 

In the second summand we claim that r is even. Indeed, this follows from (3.4). 

Also since the GL2 which corresponds to the root a3 commutes with Xlooo, the 

z3 integration does not affect this statement about r. Thus, the second summand 
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equals 

k 
(l -- q- l )  E q4r IF ]W (h(P 2k+2, p2k+2r+2, p2k+2r+2, p2k+l )W(3)XooIo(Z 3), S)dz3 

_1 ,4 (10s -  3) k = ( 1 - q  ) ~ ( ~ s  2) Eq4r]W(h(p2k+2'p2k+2r+2'p2k+2r+2'P2k+l)'s) 
r=l 

_1,r _ 3 ) k = -- E q4r--(2k+2r+2)5s--k-- 1 
(1 q ) ~ ( - ~ 8  2) r=l 

Combining all pieces, we obtain 

M(2k + 1) = 

q2~( lOs-  3) [ 
~(10s 2) q(-10s-ll(k+l) 

k 
+ (1 - q-1)q(-lO~-l)k-lo~-I E q(-lo~+4)~ _ q(-2o~+a)k-2o~+2 . 

r=l 

| 

J(2k) - ~(10s - 4) q(_los_l)k( 1 _ q(-lOs+4)(k+l)) 

and 
r - 4)G(p, r -- q(-los+a)(k+l)) . J(2k + 1) - r - 2) 

Proof Fu Lemmas 3.3 and 3.4 it is enough to compute 

Rl(2k) =/F* ]W (g(p2k)w(32)XmOo(z2)xoHo(z3), s)dzi w 

Separating the z2 integration to Iz2[ _< 1 and ]z2[ > 1, and performing the Iwasawa 

decomposition when ]z21 > 1, we obtain 

Rl(2k) = / p  ]w ( H (P2k)w( 3 )Xoolo(z3), s)dz3 

From this the Lemma follows. 

Finally, we have, 

LEMMA 3.5: For k _> 0 
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In the first summand, as in the computation of M(2k), we may perform the z3 

integration to get 

~(10s - __:_ ( ) 3 )  ~ ~ (10s  - 3)q(_108_1)  k 
~(10s 2)fw'S(p2k)'-~(lOs 2) @ 

Conjugating the torus h(1, z21, 1, 1) in the second summand, we obtain 

/F fl,,l>l ]W(h(p2k'p2~:z~''p2~:z~l'p2k)w(3)x~176176 

It follows from (3.4) that the function ]w(h(p:k,p2kz;1,p2kz;1,p2k),S) : 0 
unless Iz21 is a square. Hence, as before, we perform the z3 integration ignoring 

any possible contribution of a cocycle involving z2. Thus 

~'(10s 2) q(-lOs-1)k -t- 51> 1 

Write 

Rl(2k) -- 

- 2k 2k --1 2k --1 2k fw(h(p ,p z 2 ,p z 2 ,p ),s)lz21dz2) �9 

h ,  2k 2k - 1  2k - 1  (p ,p z2 ,p z2 ,p2k)= h(z~l,z-2 z-2 z21)H(p2kz2) 2 ' 2 , 

Using (3.5) we obtain 

<(io~ - 3) ( 
R1(2k)- ((10s 2) \q(-1~ 

+ fi~l>l]w(H(P2kZ2),s)%~llz2l-l~ 

~(10s - 3) ( 
- { ( 1 0 s  - 2) \ q ( - l ~  

oo [ p 2 k - r  

+(1-q-1)Zq(-l~ ~ 1 1)) 
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where we used the fact that Is ( p2k-" I ] = 0 if r -  1(2). Thus 
] I 

( (10s -  3) ~ [q(-los-1)k 
Rl(2k) 

~(los 2) 

+(1 - q-I) E q(-20s+3)~l~0 1 
r----1 1 

_ ( ( 1 0 s _ 3 )  ( k ) 
((10s 2) q(-lOs-1)k + (1 - q-l)  E q(-20~+3)r-(2k-2~)hs-k+~ 

r----I 

_ ((10s-3)a(_1o~_1) k l + ( 1 - q - 1 ) E q ( - t ~  , 
((10s 2) ~ r = l  

Finally, 

J(2k) =Rl(2k) - M(2k) 
k 

((lOs 2) ~ ~=~  

((lOs - 3) q(-~o.+a)k-~o~+a. 
~(lo~. - 2) 

An easy simplification of the above will give the desired expression for J(2k). 
| 

Now we return to the computation of I. Let wi, for 1 < i < 2, denote the 
fundamental representations of SOs(C). Thus wl corresponds to the five dimen- 
sional irreducible representation of SOs(C). We shall denote by (k, e) (k, g E N) 
the character of the representation k~l + ~ 2  evaluated at t . .  It follows from 
[C-S] that 

K(h(p '+m,pm) )  = (n, 2m).  

Thus, using Lemma 3.2, we have 

I -- ~(10s((10s - 4 )_  3) n,m=o ~ (n'2m)%'*qh"/2+(-5~+2)m[(1-q(-l~ 

+ q-lS'+a(p,p'~-l)G(p,  r  - qi-l~ - 1)]. 
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Write I = I~ + Io where I~ denotes the contribution to I from n even and Io from 

n odd. Thus, using Lemma 3.5, 

oo 
~(10s - 4) 2 E (2k, 2rn)q 5k-(Ss+2)m 

Ie = ((108----2-))~'(1--~S- 3) k,m=O 

(1 -- q(-lOs+4)(m+l))q(-lOs-1)k(1 -- q(-10,+4)(k+H) 

+ q-158+3(p,p)G(p ' r _ q(-10~+4)m)q(-lo.~-l)(k-1)-108+1 

�9 ( I  - q(-10~+4)k)]. 

Set x -- q-5S+2. Then 

r - 4) 2 
Ie= 

r  - 2 ) r  - 3) 

(2k, 2 m ) x  m+2k [(1 - x 2 ( m + 1 ) ) ( 1  - X 2(k+l)) -t- X3(1 -- X2"~)(1 -- X2k)]. 
k,rn----0 

Here we used the fact that  (p ,p)G(p,  r = q. Similarly, 

i ( l o s  - 4 )  2 
Io= 

q(10s - 2)~(10s - 3) 
oo 

E (2k + 1, 2m)xm+2k+2(1 - x 2 ( k + l ) )  [ ( 1  - X 2(re+l)) -t- X(1 -- X2"~)] 
k,mmO 

where one needs to use the identity "/pG(p, r  = ql/2 (see [R-S]). 

Next consider the right-hand side of (3.6). Use the Poincare identity 

oo 

L(;r, hd ,  5s - 2) = ~ tr Sex  ~ 

where S ~ denotes the symmetr ic  i - th  power operat ion applied to t . .  Thus, to 

prove (3.6) we need to prove 

oo 

( 1  - x2)3(1 - -  X 4 )  E tr S t x  ~ = 

~ = 0  

-t- 

~-~ (2k, 2m)x m+2k [(1 - x2(m+l))(1 - x 2(k+1)) 
k,ta----0 

+ x3(1 -- X2k)(1 -- x2m)] 

(2k + 1, 2mlxm+2~§  - x2(~§ [(1 - x ~(m§ + x(1  - x~)]. 
k,m----0 
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At this point we need to study the structure of the Symmetric algebra of the Ad- 

joint representation of SO5(C). Via the homomorphism from SO5(C) to Sp4(C ) 

we may talk about restricting a representation of GL4(C) to SO5(C). We shall 

study the Symmetric algebra structure of the Adjoint representation of SO5(C) 

via the Symmetric algebra of the Symmetric square representation of GL4(C). 

More precisely, let w{ for 1 < i < 3 denote the / - the  fundamental representation 

of GL4(C). It is well known that 2wl s05(c) = Ad. Thus if we denote by T ~ the 

r-th symmetric operation in GL4(C) applied to t . ,  then T r so~(c), = S~' Hence 

to complete the proof of Theorem 3.1 we need to know the decomposition of 

the Symmetric algebra of the Symmetric square representation of GL4(C) and a 

branching formula for GL4(C) to SOs(C), 

We start with the first. Let (nl, n2, n3) denote the trace of the representation 

of GL4(C), whose highest weight is nlwl + n2w2 + n3w3, evaluated at t~. It 

follows from [B-G] or [B] that 

cx~ o ~  

(1-x4) EtrT~x~= E (2n'2m'2k)x~+2m+3k" 
r = 0  n~rn ,k- - - -0  

Thus it is enough to compute (2n, 2m, 2k) so~(c)" This is done in general in [K-T] 

and explicitly for our ease in [H-U], p. 599. We have 

(3.10) 
min(2n,2k) 

(2n, 2m,2k)  so0(c) = 
b2 = 0 

2 m  

E (2m + b2 - b3,2n + 2k - 2b2). 
b3----O 

Let us remark that when using the formula in [H-U] one needs to take /31 = 

2n + 2m + 2k, f12 = 2m + 2k, /33 = 2k. Then, since they restrict to Sp4(C), we 

need to subtract the Sp4(C ) second coordinate from the first and then interchange 

the coordinates. This is because we are interested in SO5(C). 

Thus, combining (3.9) with (3.10), we obtain 

(3.11) 
oo oo min (2n ,2k )  2m 

(1-xa)EtrS~x~= E E E (2m+b2-b3,2n+2k-2b2)x~+2m+3k" 
r=0  n , m , k = O  b2=O b3=0 

Denote by J the right hand side of the above equality. We separate the summa- 
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t ion on b3 into even and odd parts. Thus 

min(2n,2k) rn 
j = ~ ~ (2m + b~ - 21,~, 2,~ + 2k - 2b~)~ "+~'~+~ 

n,m,k=O b2=0 ha:0 

min(2n,2k) rn-1 

+ ~ 2  Z (2m + ~,~ - 2b~ - ~,2~ + 2~ - 2b~)x '~+~+~  . 
~.k=0 b2:0 b3=0 
m : l  

Next, changing order of summat ions  between m and b3, we obtain 

min(2n ,2k) o~ 

J : Z ~ :  (2m + b~-  2b~,2,~ + 2 k -  2b~> "+~'~+~ 
n,k,b3=O b2=O rn=ba 

+ E (2rn + b2 - 2b3 - 1, 2n + 2k - 2 b 2 ) x  n + 2 m + 3 k  . 

n,k,b3=O b2=O rn=ba -.{- 1 

Change variables m ---, m + b3 in the first summand  and m -+ m + b3 T 1 in the 

second. Notice tha t  b3 appears only as a power of x. Hence 

~ mine2n,2k) 

g = (1 - x2) -1 E (2m + b2, 2n + 2k - 2b2)x n+2m+3k 
n,m,k=O b2----0 

oo min(2n,2k) ] 

+ Z E (2m + b2 + 1,2n + 2k - 2b2)x n+2m+ak+2 . 
n,rn,k=O ba =0 

Thus (3.11) is the same as 

oO 

(1 - x=) (1  - x 4) E tr S " x "  

r=0 
cr min(2n,2k) 

= ~ Z [(2,. + < ,2n  + 2 k -  2b.)x ~+2m+~k 
n,m,k=O b2=0 

+ (2m + b2 + 1, 2n + 2k - 2ba)x~+a'~+ak+2]. 

Notice tha t  only b2 determines whether the first coordinate is even or odd. Thus 

we write the r ight-hand side as the sum of two terms, 

oo min(n,k) 

r =  ~ ~ ( 2 ~ + 2 b ~ , 2 , ~ + 2 k - 4 b ~ ) x  ~ + ~ + ~  
n,m,k----0 b2=O 

oo min(n- 1,k- 1) 

+ E E (2mT2b2-i-2'2n-k2k-4b2-2)xn+2m+ak+2 
,~=o b.z=O 

n , t . = l  
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and 

r ' =  
oo min(n-- l ,k--1)  

~ (2m+2b2+l,2n+2k-4b2-2) x~+2m+3k 
~ = 0  bT= 0 

n , k = l  

oo m i n ( n , k )  

+ Z E (2m+2b2+l'2n+2k-4b2)x'~+2m+3k+2" 
n , m , k = 0  b 2 = 0  

Going back to (3.8) we divide the identi ty by (1 - x2) 2 and write the right hand 

side of the divided identi ty as a sum of 

I~' = (1 - x: )  -2 

and 

I o ' = ( 1 - x 2 )  -2 

~ ( 2 k ,  2m)x m+2k 
k , m = 0  

[(1 - x2(m+l))(1 - x 2(k+1)) + x3(1 - x2k)(1 - x2m)] 

~'~ (2k + 1, 2m)xm+2k+2(1 - x 2(k+1)) 
I%m=O 

[(1 - x 2(re+l)) + x(1 - x2m)]. 

To finish the proof of our Theorem we need to show tha t  le t = I~' and 1o ~ = Io'. 

We s tar t  with 1~'. For fixed k we have ~o ~--~min(n,k) k oo ~ = 0  ~b~=o = ~ = 0  E~:b2 and 
oo ~ - ' . ,m in (n -  1 ,k--  1) k oo 

~-~,~=1 z--.,b2=o = ~-~b2=O ~,~=t~+l" Thus 

I :  = ~ (2m + 2b2, 2n + 2k - 4b2)x '~+2m+ak 
k,rn=O b 2 = 0  n = b 2  

oo k o~ 

+ ~--~ ~ Z (2m+2b2+2'2n+2k-4b2-2)x'~+2"+3k+2" 
~ = 0  />2=0 n----b2+l 
i = l  

We change the order of summat ion  between k and b2 to obtain 

o o  o o  o o  

Z Z (2m+2b2,2n+2k-4b2)x'~+2m+3k 
b2,m=O k=b2 n=b2 

+ Z Z (2m+2b2+2'2n+2k-4b2-2)x'~+2m+3k+2" 
b 2 , m = O  k = b 2 + l  n = b x + l  
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Changing variables k -* k+b2, n -~ n+b2 in the first summand and k ---, k+b2+l ,  

n ~ n + b2 + 1 in the second implies 

oo 

I~ = ~ (2m + 2b2, 2n + 2k)x "+2m+3k+4b: 
b'2 ,rn,k,n=O 

+ ~ (2m + 262 + 2, 2n + 2k + 2)x n+2"~+sk+462+6 . 
b2 ,m,k,n~-O 

Next consider I','. Dividing by (1 - x2) 2 we get 

k,rn=O n = O  r-----O 

cr r n - 1  k - 1  

k,rn=l n = 0  r = 0  

Change order of summations between k with r, and m with n, 

I2' = (2k, 2m)x ~+2k+2~+~ 

+ (2k,2m)x 
n , r = 0  m = n + l  k----r+l 

A suitable change of variables gives 

oo 

I:' = Z (2k + 2r, 2m + 2n)x '~+2k+a'~+4r 
n,%m,k=D 

+ s (2k + 2r + 2, 2m + 2n + 2)x m+2k+3n+4~+6 . 

n,r,m,k----0 

11 

And this is I~. Thus I '  e = I~. Similarly we show I~o = Io'. 

This completes the proof of Theorem 3.1. | 
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